Research and development of an electron beam focusing system for a high-brightness X-ray generator
نویسندگان
چکیده
A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.
منابع مشابه
Performance of an electron gun for a high-brightness X-ray generator
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron g...
متن کاملطراحی و شبیهسازی مجموعه شتابدهنده و متمرکز کننده الکترواستاتیکی
Electrostatic focusing lenses have a vast field of applications in electrostatic accelerators and particularly in electron guns. In this paper, we first express a parametric mathematical analysis of an electrostatic accelerator and focusing system for an electron beam. Next, we At design a system of electron emission slit, accelerating electrodes and focusing lens for an electron beam emitted f...
متن کاملU-shape rotating anti-cathode compact X-ray generator: 20 times stronger than the commercially available X-ray source
A new type of U-shape anti-cathode X-ray generator in which the inner surface of a cylindrical target is irradiated by an electron beam has been made by modifying a conventional rotating anti-cathode X-ray generator whose brightness in the catalog is 12 kW mm(-2). The target material (Cu), target radius (50 mm) and rotating speed (6,000 r.p.m.) were not changed in this modification. A brightnes...
متن کاملRelativistic electRon-Beam tRanspoRt studies using HigH-Resolution, coHeRent tRansition Radiation imaging
LLE Review, Volume 118 68 Laser-generated relativistic electron beams have applications in compact, high-brightness laser–plasma particle accelerators,1 narrowband x-ray sources for medical applications,2 x-ray sources for ignition-scale, high-density inertial confinement fusion (ICF) target backlighter radiography,3 collimated electron beams for free-electron lasers,4 and collimated electron b...
متن کاملPulse Compression via Velocity Bunching with the Llnl Thomson X-ray Source Photoinjector
We report the compression of a high brightness, relativistic electron beam to rms lengths below 300 femtoseconds using the velocity compression technique in the LLNL Thomson X-ray source photoinjector. The results are consistent with analytical and computational models of this process. The emittance evolution of the beam during compression is investigated in simulation and found to be controlla...
متن کامل